

Rochester Steampunk AR Unity Project Manual v1

Spring 2020

1
Table of Contents

I - ​Getting Familiar With the Project

II - Documentation Sources

III - Unity Project Setup
- Unity version, tools needed, editor settings

IV - Testing and Running The Project in Unity Editor
- How to use Unity remote and create builds

V - App Features
- Interface
- Waypoints & Interactions
- The game loop

VI - The Unity Project
- Project organization
- Scenes
- Hierarchies
- Prefabs
- Script Summaries

VII - Working with Mapbox

VIII - Process for Adding New Narratives
- Narrative text
- Waypoint coordinates
- Images
- Prefabs & Tags
- Hardcoded Areas

IX - Notes on Creating Location-Based Experiences
- Real world distances and play times
- Selecting locations for waypoints
- Evaluation of initial narrative and waypoint choices

X - Improving the Project as a Development Tool
- Dynamic systems
- Simplifying addition of content
- Distributing workload
- Remedying hardcoded areas left over from the port

XI - Build Chart and Future Features

2
I - Getting Familiar With The Project

What is Rochester Steampunk AR?

A location-based narrative experience for mobile devices and a tool that can be used to create new narrative

content/experiences.

What Tools Does Rochester Steampunk AR Use?

Unity game engine for development and Mapbox for location-based functions.

What Does Rochester Steampunk AR Look Like?

 Main Menu Map View Waypoint Interaction

Link to Gameplay Video

Link to Android Build (APK)

What Is the Status of This Project?

Link to Current Project Summary

https://drive.google.com/open?id=1BF98tC6vNJMOyP0nO7a042ayPZYfJAqS
https://drive.google.com/open?id=1n3JG2feo3T4_uGpGixw2YJ5GxRYTIQHu
https://drive.google.com/open?id=1pUapDi77z7hbJFeGMzyEvTmFXArQ_VmB

3
II - Documentation

Here are useful sources to consult when working on this project:

Technical:

Unity Documentation

Unity Forum

Unity3D Subreddit

Mapbox Documentation

Mapbox Unity SDK Info Page

Mapbox Forum (Stack Overflow)

Mapbox Subreddit

Mapbox Studio Manual

Design, Process, and Storytelling Practices

Designing Games, Tynan Sylvester​ (Print)

Collaborative Worldbuilding for Writers and Gamers, Trent Hergenrader​ (Print)

Interactive Storytelling, Chris Crawford​ (Print)

Digital Storytelling, Carolyn Miller​ (Print)

Jessika Weber’s Thesis on Location-Based Games for Tourism​ (PDF in drive)

https://docs.unity3d.com/Manual/index.html
https://forum.unity.com/
https://www.reddit.com/r/Unity3D/
https://docs.mapbox.com/?utm_medium=sem&utm_source=google&utm_campaign=sem%7Cgoogle%7Cbrand%7Cchko-googlesearch-pr01-dynamicsearchcampaign-nb.broad-all-landingpage-search&utm_term=brand&utm_content=chko-googlesearch-pr01-dynamicsearchcampaign-nb.broad-all-landingpage-search&gclid=CjwKCAjwvZv0BRA8EiwAD9T2VcP78AAqUEuubzvVB8aWnSmaI6iZ0L8tafRdteTsUOn5jNwNSbnRIxoCEXIQAvD_BwE
https://docs.mapbox.com/unity/maps/overview/
https://blog.mapbox.com/introducing-mapbox-developer-forums-on-stack-overflow-4c1ba2bf2efb
https://www.reddit.com/r/mapbox/
https://docs.mapbox.com/studio-manual/overview/
https://books.google.com/books/about/Designing_Games.html?id=sckajE19pFAC&source=kp_book_description
https://books.google.com/books/about/Collaborative_Worldbuilding_for_Writers.html?id=5o9qDwAAQBAJ&source=kp_book_description
https://books.google.com/books?id=68GCG4jVZ9EC&printsec=frontcover&dq=interactive+storytelling+Chris+crawford&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjr9L2h8c_oAhVSMt8KHe6zBRwQ6wEwAHoECAIQAQ#v=onepage&q=interactive%20storytelling%20Chris%20crawford&f=false
https://books.google.com/books/about/Digital_Storytelling.html?id=fqvpAwAAQBAJ&source=kp_book_description
https://drive.google.com/open?id=1qYFbZFVpHASqigdex4HutsBuEkNR6Zef

4
III - Unity and Project Setup

Software needed:

Win10/macOS:

- Unity Hub

- Unity version 2019.3.7f1

- Rochester Steampunk AR Project Folder

Android/iOS:

- Unity Remote 5 (​Android/GooglePlayStore​) (​iOS/AppStore​)

- Static Fake GPS Position App (​Android/GooglePlayStore​) (​iOS/AppStore​)

- Fake GPS Path Simulator App (​Android/GooglePlayStore​) (iOS/AppStore)

Hardware needed:

- Win10/macOS computer for working with Unity

- Android/iOS mobile device (phone/tablet) for builds and running Unity Remote

- Cable for connecting mobile device to computer running Unity

Additional:

- Access to the Rochester Steampunk AR Google Drive

Notes:

After installing Unity Hub and downloading the correct version of unity with android, iOS,

windows/mac/linux standalone modules, download and unzip the Rochester Steampunk AR project

folder. Point Unity Hub to the folder and open it.

https://unity3d.com/get-unity/download
https://unity3d.com/unity/whats-new/2019.3.7
https://play.google.com/store/apps/details?id=com.unity3d.genericremote&hl=en_US
https://apps.apple.com/us/app/unity-remote-5/id871767552
https://play.google.com/store/apps/details?id=com.lexa.fakegps&hl=en_US
https://apps.apple.com/us/app/fake-gps-location/id1291822089
https://play.google.com/store/apps/details?id=ru.gavrikov.mocklocations&hl=en_US

5

IV - Testing & Running the Project In Unity Editor

Step 1 - Unity Checklist:

- Make sure Unity Remote settings are enabled,

Edit > Project Settings > Editor > Unity Remote > Any Android Device OR Any iOS Device (change

based on test device)

- Make sure you have a valid Mapbox Access Token loaded into your project

Mapbox > Setup > Access Token (Make an account at Mapbox.com if you don’t have a valid token,

access tokens can be found under the Account tab)

6
Step 2 - Connect Mobile Device to Computer Running Unity

- If using Android make sure developer options are enabled & USB File Transfer is enabled

Step 3 - Run Unity Remote App

- If needed, run fake GPS app as well

Step 4 - Click Play Button in the Editor

- Make sure current scene open is ScenarioSelect menu scene

- If Unity game view doesn’t appear on your phone, try restarting Unity to apply Editor Unity

Remote settings

Notes on Unity Remote 5 for Testing:

- Touch Input isn’t processed, touches are processed as mouse clicks

- This affects the QuadTreeCameraManagement script that handles panning & zooming, mouse

and keyboard input is handled differently than touch input

Notes on Testing:

- Mapbox has faux gps coordinate input capabilities, but they are harder to implement than using unity

remote

- Use builds to test touch-related functionality

- Getting stuck on the loading screen indicates that Mapbox has failed to initialize the map, make sure that

you give the app location service permissions

7
V - App Features

Opening the app for the first time prompts the user for storage and location permissions. Storage permissions are
used for the system that parses game data from files, while location services are accessed by Mapbox.

Scenario Selection Menu
This is the first screen users see. There are three buttons not yet implemented: tour mode,

collection, and settings. There is a scrolling menu that contains buttons used to select a scenario to

play. The initial build has the first scenario repeated to demonstrate the scrolling menu and

positioning of buttons.

Information on each button displays the scenario, it’s title, and the completion percentage. Tapping

a scenario button loads the next scene.

Main Game

(Intro)The main game display is used for the rest of player interactions with this app.

When the scene loads, the player receives a scenario intro message, and is then presented with the

path selection menu. After selecting a path, a path intro message is displayed.

(New Waypoint) Each time a new waypoint is unlocked, the map pans to the waypoint

location with the overhead camera view. The user is prompted with “The Next Waypoint is

Location Title”. ​After displaying that message, the camera remains centered on the waypoint. The

user can pan and zoom around the area to see where the waypoint is, or return to their

position/character by tapping the compass or snap button.

8
(Camera Views) There are two camera views the user can switch between, a close view that follows the player

character, and an overhead view that displays more of the map and initially follows the character.

(Close) The close view has a better view of the character 3D model, and allows the player

to orbit the camera around their player by swiping left or right. After 5 seconds of not touching the

screen, the camera will return to the original orientation behind the player. There is a single UI

element, the compass, which rotates based on the user’s heading or the direction their device is

facing. Tapping this compass icon changes the view to the overhead camera.

(Overhead) The overhead view is more useful for searching the map for waypoints and

planning a route. This view will follow the player by default, but after the user makes a big swipe

on the screen, the camera will ‘break’ from following the character, allowing the user to pan

around the map. Dragging with a single finger will pan the map around, and there is no limit to

how far the user can pan the camera. While in panning mode, a target button UI element will

appear, which will snap the overhead camera back to the user’s location. In this mode, the compass

icon will constantly face North. An additional function in the overhead view is zooming. Using

common pinch-to-zoom controls, the map can be zoomed within constrained levels. This is useful

for comparing the user’s position to waypoints.

(Waypoint Range) As the user gets in range of a waypoint, the waypoint

model will transition from a resting animation to an active animation.

When the waypoint completes the transition, the user can interact with the

waypoint by tapping on it.

9

(Waypoint Interaction) When a waypoint is in range and the user taps it, the narrative

UI will appear with an image representing the location or narrative event, the title of the

location, and the narrative segment at that waypoint. Tapping on the waypoint again will hide

the UI, but tapping on the ‘close’ button will cause the waypoint to be collected. When a

waypoint is collected, it will disappear from the map, and the camera will pan to the next

waypoint.

(Game Loop) After the user reaches the last waypoint and closes the narrative UI, the game displays a message

telling them they have completed the current scenario path. The scene reloads, skipping the intro UI and going right to the

path select menu, which will prompt the user to select another faction to play as. When all paths are complete, the app will

reload to the main scene. At this point there is no way to return to the main menu while playing, so users have to complete

all the paths in a single play session. When progression saving is implemented, the user will be able to close the app and

continue where they left off at a later time.

10
VI - The Unity Project

Project Organization:

Assets Folder​ - contains everything related to developing this project

Custom Assets Folder​ - assets used in the project that aren’t from

unity packages or third party plugins

2D Assets​ - textures, UI elements, and scenario images

3D Assets ​- empty (will hold POI models)

Fonts​ - OTF file types and Text Mesh Pro font assets

GameData ​- versions of coordinate and narrative files for

editing

Materials ​- materials made from assets in textures folder

Prefabs​ - prefab assets like waypoints, path buttons, etc.

Scripts​ - scripts written for this project in C#

DestPrimitives ​- third party content from asset store, used to

generate primitive 3D models (the torus on the waypoint prefab)

Mapbox ​- Unity SDK 2.1.1 notable folders include prefabs and

examples, which contain insight on how Mapbox is meant to

function

Play Services - ​editor-based Google Play Services

Resources ​- contains Mapbox configuration file

Scenes​ - project scenes, there are currently 3: MainGame,

ScenarioSelect, and ScrollRectSnapDev

Streaming Assets Folder​ - used to load files at runtime on mobile

devices, the coordinate and narrative files are stored here

TextMeshPro ​- Unity’s TextMeshPro plugin, a high-quality and

more efficient way to handle text in UI elements than the default

Unity UI Text

ThirdPartyAssets ​- contains a line ending fixer that comes with

Mapbox (WoLfulus)

Packages Folder ​- contains and manages content added via Unity package manager

11
Scenes

Scenario Selection Scene​ - prompt for permissions, find and parse game data files, pass scenario index player

selects and parsed gamedata into the next scene; UI focused.

Scenario Selection Hierarchy:

UNITY: ​main camera, and directional light for the scene.

UI:​ holds majority of components in this scene.

Canvas:​ Unity UI canvas object.

paper_BG_IMG: ​canvas background .

image, currently set to paper sprite in 2D folder.

Detail…: ​embellishments created with the victorian ornament

TMP asset.

TitleUnderlineOrnament: ​another victorian ornament TMP asset.

Scroll View​: Unity scroll rect object, contains scenario buttons and

handles scrolling.

Collection/Tour/Settings_BTN: ​not yet implemented button

objects.

Title_TMP: ​title text mesh pro field.

EventSystem: ​handles input/UI interactions.

12
MenuManager: ​used for organizing, holds object with permissions checker script.

PermissionsManager: ​has script component that ensures require permissions are granted before starting the

game.

PersistentGameData: ​GameObject that isn’t destroyed in between scenes, holds game data file paths, parsed file

information, and other relevant information that needs to exist between each scene.

Main Game Scene​ ​ - generates waypoints based on coordinates linked to selected scenario, populates waypoints

with narrative story segments, images, and location titles. Render and update map visual based on player location, camera

position, and pan/zoom levels. Track session path progression and reload the scene when the last waypoint is reached.

13
Main Game Hierarchy:

GAMEMANAGERS: ​gameobjects with manager scripts.

WaypointManager: ​organizes waypoints and the data

stored at each location.

GameDataManager: ​handles storage of persistent game

data in the scene .

UI_Manager: ​organizes and controls UI states.

StoryManager: ​sequences and tracks progression through

the narrative.

Scenario1_ImageCatalog: ​prefab containing an

array of the images relevant to the current scenario

MultiCamController:​ controls different camera states.

 MAPBOX: ​location-based game Mapbox elements.

LocationBasedGame: ​parent object.

Map: ​numerous Mapbox scripts, responsible for

rendering the map data, spawning waypoints on

the map, computing pan/zoom commands, and

adjusting map settings in the editor and at runtime

FollowTarget: ​unused follow transform for

cameras.

OrbitParent: ​rotating this game object orbits the

camera around the player, follows player via script,

and contains the close view camera object.

PlayerTarget: ​player gameobject, has Mapbox scripts for controlling movement/rotation,

rigidbody and player controller script to register collisions with waypoint objects. Contains the

3D elements of the demo character, as well as transforms the main cameras use to follow the

player.

LocationProvider: ​handles position data input from different sources and formats/passes data to

Mapbox systems.

MapboxCanvas: ​disabled, carried over from the mapbox prefab.

UNITY: ​directional light and event system objects

UI: ​parent element.

MainCanvas: ​single UI canvas for the game.

WalkingModeUI: ​parent of compass button and location snap buttons.

NarrativeModeUI: ​parent of narrative image, location field, and story text field.

14
LoadingUI: ​loading screen displayed before Mapbox fully initializes.

IntroUI:​ scenario and path intro messages, path selection menu.

NewWaypointUI: ​message displaying the location title of the next waypoint.

OutroUI: ​message telling player they have completed the current path/scenario.

OverheadView_CAM: ​camera view that better displays map information, used for map panning/zooming.

Project Prefabs

There are currently 6 types of prefabs used in the project:

- 1_0_ChurchOfLightBTN: ​path selection menu UI object.

- 1_1_SuffragettesBTN: ​path selection menu UI object.

- 1_2_MafiaBTN: ​path selection menu UI object.

- Intro_PathSelect: ​contains path selection menu UI elements.

- Scenario1_ImageCatalog: ​an array containing images linked to scenario 1.

- WaypointPrefab: ​waypoint gameobject, with scripts that hold the fields populated with parsed

waypoint location, story, and image data.

Script Summaries

There are 25 C# scripts made specifically for this project:

- CameraFacingText: ​controls the camera facing text label within the waypoint prefab, currently

has issues tracking camera in orbit mode.

- CameraFollow: ​essentially a camera manager. Handles camera states for specific cameras,

enables player following. Most functionality and control transferred to MultCamController.

- CameraManager: ​camera pan/zoom controller, was replaced with Mapbox

QuadTreeCameraMovement for better functionality with the map.

- CamOrbitController: ​rotates the orbit camera parent object based on delta of a touch input drag.

- DontDestroyOnLoad: ​used for keeping persistent data between scenes.

- DontDestroyOnLoadAccessor: ​no longer used, served as a fix for an issue with the persistent

data object.

- FollowObject: ​used to allow the orbit parent to follow the player object without parenting.

- GameDataManager: ​populates location list, holds LocationData class, most functionality moved

to SpawnOnMap.

- GameDataParser: ​finds filepaths based on runtime device, parses data from files. Holds

StorySection class, which contains the scenario tag, faction tag, location name, narrative text, and

sequence index of each story segment. Note: the JSON parser needs the value names and class

name of StorySection to be the same as in the StoryText.json file to parse successfully.

15
- LoadingIcon_Animator: ​animators the radial fill amount of the loading icon image.

- MultCamController: ​manages different camera states, switching between physical camera

objects, enabling orbit camera function, and lerping the camera to waypoints.

- PermissionsChecker: ​ensures that the user grants the application relevant permissions before

launching (Android devices).

- PlayerController: ​sends waypoint data to populate UI elements when waypoint detects a

collision with the player gameobject.

- RotateCompassIcon: ​rotates the compass icon UI object based on the player’s heading/direction

- ScenarioImageCatalog: ​stores an array of images and an index tag for accessing and organizing

the narrative images in a scenario.

- SecnarioPathBTN: ​used to send selected path data to StoryManager when a button is clicked

- ScrollRightSnap: ​handles the scrolling and ‘snap to element’ function of the path selection

menu.

- StateManager: ​unused.

- StoryManager: ​organizes the story sections relevant to the selected path, spawns an image

prefab based on the current scenario, handles story progression and finding the next waypoint in

the path sequence.

- TextSizer: ​unused. Resizing text in editor.

- UImanager: ​manages the different UI elements in the main game scene, populates the path

selection menu with button elements, populates the narrative UI with waypoint relevant text,

hides loading screen UI when Mapbox AbstractMap is initialized.

- UpdateCamRotator: ​unused. Created when building out orbit camera functionality.

- WaypointAnimator: ​animates the different 3D models in the demo waypoint prefab, waypoint

states, detects if player enters waypoint activation range.

- WaypointData: ​holds waypoint coordinates, location name, label text, current StorySection at

the waypoint, and a collection of StorySections that exist across all paths at that location. Detects

taps/clicks on the waypoint if the player is within range.

- WaypointManager: ​populates SpawnOnMap with the location coordinates to spawn waypoints,

assigns each waypoint StorySections based on their location title.

Three of the Mapbox scripts were edited for this project, take care not to overwrite them when importing new

versions of Mapbox or reimporting the MapboxSDK.

- AbstractMap: ​didn’t directly edit the script, but attached UImanager.HideLoadingUI,

UImanager.ShowIntroUI, and WaypointManager.SpawnWaypoints to the OnInitialized event.

This allows greater control over the order of events reliant on Mapbox initializing the map.

16
- SpawnOnMap: ​moved spawning gameobjects from the Start method to control the timing of

when the gameobjects are spawned, adjusted the scaling of gameobjects based on the zoom levels

of the current AbstractMap.

- QuadTreeCameraMovement: ​limited when processing input can occur (ie. panning can’t occur

when the camera is in close view), direct input detected from single touches in close view camera

mode to the OrbitController.

17
VII - Working With Mapbox
Getting Mapbox Functionality in Scripts

Depending on what functions you need, add the following namespaces to the script you are creating (‘using’

prefix):

- Mapbox.Unity.Map ​: access AbstractMap.cs, useful for checking & adjusting the zoom level,

camera being used for map tile rendering bounds, and accessing other variables on the current

map.

- Mapbox.Unity.Utilities​ : allows you to use the Conversions class, which is important when

converting coordinates from Unity world space to Geo-Coordinates on the map and vice-versa.

- Mapbox.Examples ​: used for referencing the scripts Mapbox includes with their example scenes.

This was utilized for accessing the QuadTreeCameraMovement script, which simplified the

process of zooming and panning the camera.

Location-Based Games and Mapbox

The initial build of Rochester Steampunk AR is based on the location-based game prefab included with the

Mapbox SDK. This prefab comes with an AbstractMap, Player object that updates based on GPS coordinates, and a

Location provider component that converts GPS data to values usable in the Unity scene.

The AbstractMap gameobject has SpawnOnMap and QuadTreeCameraMovement components added.

SpawnOnMap handles instantiating the waypoint prefab on the map, and scaling/adjusting their positions based on the

zoom level of the map. Adjusting the zoom level of the map while doing a task like lerping or panning the camera can

cause issues with lerp positioning, as the coordinate space scales with the map zoom level. QuadTreeCameraMovement

handles the panning and zooming functionality of the map.

AbstractMap loads map graphics as tiles, and there are different bounding options that can be used to control how

many tiles are loaded at one time. Rochester Steampunk AR uses camera bounding, which tells mapbox to fill the view of

the camera with map tiles. This is fine except for when the main camera gets a large sight line in the scene, Mapbox tries

to load a large/infinite amount of map tiles and the app/editor can crash.

The player object has been given empty gameobjects as children that the CameraFollow script uses to track the

player’s position from different angles.

Custom Map Styles

Custom map styles help stylize location-based games and create unique themes. Everything from colors, textures,

and information displayed on the map can be edited with the Mapbox Studio tool. Rochester Steampunk AR’s initial build

features a custom map style from the Mapbox website. ​Standard​ is a map style based on 1920’s maps created by the

Standard Oil Company, fitting for the game’s steampunk aesthetic. Mapbox Studio is a straightforward tool that lets artists

https://blog.mapbox.com/creating-a-new-standard-646e6b7e6544

18
and graphic designers easily create custom map styles to fit narrative content for the app. Switching the map style out is as

simple as adjusting the URL in AbstractMap.

Adding 3D Buildings to a Map

The development chart for Rochester Steampunk AR includes two types of 3D models to be added to

AbstractMap. The first type, at places of interest (POIs), can be added to the map with the same SpawnOnMap technique

currently used for adding waypoints. This process gets tricky if builds are extruded from AbstractMap, and the POI

models will need to be added with the ​ReplaceFeatureModifier​ aspect of AbstractMap.

Extruding simple 3D buildings from the map is also simple if done separately from adding buildings with

SpawnOnMap:

- Open the MainGame scene

- In the Hierarchy window go to MAPBOX > LocationBasedGame > Map

- Select Map and in the Inspector window, click MAP LAYERS

- Open the FEATURES menu > Add Feature > Buildings

- Select the new buildings feature in the Map Features chart to access modeling and texturing menus

The only downside to generic 3D buildings is that they tend to detract from the information on 2D maps, and may

make it difficult for users to find waypoints and plan routes.

Example Scenes

Use these scenes as reference when trying to figure out how the different pieces of Mapbox interact with each

other. The panning and zooming mechanics in Rochester Steampunk AR are derived from the 6th example scene,

Zoomable Map.

https://docs.mapbox.com/unity/maps/examples/replace-features/

19
VIII - Process for Adding New Narrative Content
Adding Narrative Text

The dynamic narrative text system allows new stories to be added through a specially formatted JSON file. The

narrative is broken up into segments based on the location of the events they convey. By using pointer values within the

JSON file, each segment can be further classified based on: scenario, sequence within the scenario or path, faction/path,

location string, and an image from the image catalog.

The following is an example of the format within the StoryText.json file:

{

 "scenario":"1",
 "sequence":"0",
 "faction":"0",
 "location":"corinthianhall",
 "image":"0",
 "text":"Corinthian Hall, On the cold morning of November 27, 1923…”

},

Even with the pointer values represented as numbers, there is a verbal tag that makes the information in the file

easy to read for people. The file itself can be edited in notepad, and doesn’t require programming experience. The

example above belongs to the initial scenario, is the first piece of text in the scenario path sequence, is tied to the Church

of Light faction previously assigned the index value of 0, is placed at the location Corinthian Hall, utilizes the entry of the

scenario’s image catalog at the index of zero, and has a single plain text string containing the story segment.

Besides adding narrative text, the pointer values can be manipulated to add scenario or path specific text for UI

elements. The snippet below uses negative sequence, faciton, and image pointers to add an entry that includes text for the

initial scenario intro:

{

“scenario":"1",
 "sequence":"-1",
 "faction":"-1",
 "location":"",
 "image":"-1",
 "text":"Follow three Democrat & Chronicle reporters in 1920's Rochester, NY…”

},

It is important to have the factions, sequences, and images sequenced before making additions to the

StoryText.json file. This means making a list of each data type, and assigning values starting at 0 to each element.

Retaining the original order when implementing these lists in Unity is important to prevent mixing up content. These lists

can be created with tables in a google document as part of the pre-development content creation process.

20
The information from StoryText.json is found and parsed with the GameDataParser script. There are different

paths depending on what the runtime device is, the script detects and applies the correct path modifiers. GameDataParser

then converts the input from each section of the JSON file into StorySection objects that mirror the format of the file

(same variable names and types) and adds the object to a collection. From this point, the WaypointManager script assigns

each story segment to a waypoint by comparing the location field of the StorySection with that of the waypoint.

Future teams may find that it is easier to keep separate story files for each scenario. This would make it easier to

manage specific scenarios, reduce the likelihood of errors impacting other scenarios, and require minimal development to

implement. The downside would be more files to manage and parse, which creates more room for errors.

Adding Coordinates and Locations

The current system for adding locations and coordinate points is dynamic and will work for any scenario, but isn’t

as refined as the process used to add narrative text. Coordinate entries can’t be filtered by scenario within the file, but the

StoryManager script completes the filtering process during runtime. The data tied to each coordinate point is limited to a

location title and the coordinate pair, each entry is added to a new line in the file:

Corinthian_Hall,43.1562269,-77.61291840000001

This coordinate entry represents Corinthian Hall, with a latitude of 43.1562269 and longitude of

-77.61291840000001. Mapbox utilizes latitude and longitude coordinate pairs as strings, which it then parses into

numerical values. The text component of each entry is used to assign the waypoint StorySection data objects.

Adding Images

When a player accesses the story section at a

waypoint, an image is displayed with the narrative text

and location name. The images for each scenario are

stored in separate folders (Assets > CustomAssets > 2D

> ScenarioImages > Scenario#). When adding images

to a Unity project, make sure to set the texture type for

each image to Sprite (2D and UI) by clicking the image

in the project window and editing the texture type field

in the inspector window.

Use the previously created indexed list with the location/event images to create a new CatalogImagePrefab (CustomAssets

> Prefabs > Scenario1_ImageCatalog). Duplicate a pre-existing prefab and select the ‘open prefab’ option in the inspector

window to access the prefab editor. With the main prefab selected, use the inspector window to edit the Scenario Index

21
and Image Catalog fields. Define the number of images used in your scenario with the Size field under the Image Catalog

drop down menu, and drag images from the project window to their corresponding indexed locations. Save the prefab

(Ctrl+S).

The last step is to add the new ImageCatalog prefab to the Main Game scene. Drag the prefab from the project

window to the Hierarchy window. The ImageCatalog prefab should be parented to the StoryManager object within

GAMEMANAGERS. Select the StoryManager object, and edit the ImageCatalogBank field, increase the size and drag the

new catalog prefab from the Hierarchy window to the new element within ImageCatalogBank. The aspect ratios of each

image are preserved when they are used to populate the NarrativeUI image component.

22
Adding Scenario Paths and Sequencing

After adding the new scenario’s narrative data to StoryText.json, coordinate data to LocationCoordinates.txt, and

images to a new ImageCatalog prefab, it is time to implement the different paths players can take within the scenario and

the sequence of the story segments within those paths. This part of the process requires the most technical interactions

with Unity and still relies on some hard-coded systems.

The first step is creating button prefabs that

represent each path available in the new scenario.

Start with duplicating one of the existing buttons in

Assets > CustomAssets > Prefabs >

1_0_ButtonName_BTN.prefab. The naming

convention of each button denotes the scenario it

belongs to, the index the path represents, and the

name of the path/faction. Replace the source image

components of faction_IMG and btnBG_IMG to

customize the main image and button background. A

text element can be added if a created button image

doesn’t have the name of the path in it already. Select

the main game object of the prefab in the Hierarchy

window (1_0_ButtonName_BTN), and find the ScenarioPathBTN script component in the Inspector window. Edit the

scenario and path index fields with values reflecting the new scenario. The BgIMG, and FactionIMG fields are for later

development when creating path button prefabs is simplified. The SM (StoryManager) field is automatically filled by the

ScenarioPathBTN script. Save the prefab and return to the CustomAssets prefab folder.

Open the prefab Intro_PathSelect, which

contains the menu used for selecting a path within the

current scenario. Select the ScrollerController

gameobject and edit the ButtonCollection size field to

the number of path option buttons being added. Drag

the new button prefabs created to each new element in

the ButtonCollection field.

23
Scenario Selection

The final step in adding new scenario content to the Rochester Steampunk AR

project is to add scenario select button to the main menu. This step will pass a scenario

tag into the next scene, which allows StoryManager, WaypointManager, and

SpawnOnMap to filter data relevant to a single scene.

Open the ScenarioSelect scene. Go to UI > Canvas > ScrollView > Viewport >

Content > PlayBTN_TMP. The initial build has a repeating list of buttons for the same

scenario. Delete all but two of those buttons (PlayBTN_TMP), the second button will

be repurposed for the new scenario. If the buttons are already removed, simply

duplicate one of the existing buttons.

PlayBTN_TMP contains the following components:

Play_BTN_TMP:​ TextMeshPro Button UI objects, the OnClick() event

passes a scenario index tag to the persistent data object to carry on to the

next scene and checks to make sure all necessary permissions are granted

before launching the game scene.

paper_desat_BG_IMG: ​the background image for the button.

play_btn_txt_tmp: ​middle text field, used for listing factions.

Divider_1: ​first text divider graphic.

play_btn_txt_tmp(3): ​last text field, displays completion

percentage.

Divider_1(1): ​second text divider graphic.

play_btn_txt_tmp(2): ​first text field, displays scenario

name/number.

24
Each text and image field can be populated based on the

theme of the new scenario. After updating the fields of the button,

select the main button gameobject (Play_BTN_TMP), and go to the

Inspector window. Find the OnClick() field of the Button

component, and replace the value of the

GameDataParser.ScenarioSelect field with the index of the new

scenario.

After this step, a scenario index will be passed from the

menu scene into the game scene, which will be used by

SpawnOnMap, WaypointManager, and StoryManager to filter out

game data not related to the new scene at runtime. Try creating a

build or running the editor with Unity remote enabled.

25
IX - Notes on Creating Location-Based Experiences

Jessika Weber’s thesis on making location-based games for tourism​ is an important tool to use when

mapping the story sections of the narrative to real world locations. The thesis includes user-studies that cover

what engages location-based game players, and what causes them to end the experience when playing a

location-based app. Some elements, like the weather, are out of the control of the developer. The real world

locations used for each narrative experience should be significant, interesting, and relatively close to one

another.

This is a screenshot of the ​Esri prototype​ the Unity project is based on. The waypoints on this map are

the same as the first scenario in the Unity app. Each waypoint is tied to a significant location, such as City Hall.

Most of the waypoints are clustered in an area of downtown on the same side of the river. The distance between

each waypoint is easily walkable, and the path to each waypoint is interesting on its own. Each user’s walking

threshold before they become disinterested in continuing the experience is different, but be sure to keep the

distance between waypoints reasonable.

If certain waypoints have to be significantly farther from the cluster, which the prototype has, be sure to

populate the path with secondary waypoints for the user to interact with on the way. Secondary waypoints can

https://drive.google.com/open?id=1qYFbZFVpHASqigdex4HutsBuEkNR6Zef
https://www.arcgis.com/apps/MapJournal/index.html?appid=d5dbbc7238db4f379f9e36db1c5b3f62

26
also be used to guide users through the most interesting path between waypoints. An interesting path doesn’t

need to have a lot of app content, but should pass by scenic areas, historical buildings and landmarks, or areas

of the town/city that have fun activities. In the instance of the user wanting to pause interaction with the app to

experience the area around them, disengagement becomes a positive. Users are more likely to return to a

location-based application that brings them to unique and interesting areas.

The implementation of custom datasets through Mapbox will allow developers to control the points of

interest displayed on the in-game map. Elements like restaurants, stores, and graphics displaying land use (think

green map sections representing parks) can be added.

27
X - Improving the Project as a Development Tool

Dynamic systems

When adding features to Rochester Steampunk AR the first version/iteration will tend to be hardcoded,

meaning that it will work for a single set of input data. When thinking about implementing the feature to handle

more than one scenario think of it as being a dynamic element or system in the project. The less interaction

using the system requires from developers, the better. A good example of this is the way Rochester Steampunk

AR handles spawning waypoint objects. Instead of making developers place X number of waypoint objects in

the scene, a single waypoint prefab is used. The SpawnOnMap script has a reference to the prefab, which it uses

at runtime to generate waypoint objects based on the number of locations in the current scenario. In Unity,

making dynamic systems usually involves cutting down the number of editor-assigned inspector references and

the amount of gameobjects that need to be placed in the scene.

One area that needs to be improved with the current state of the project is the method used to determine

the number of steps in each path of a scenario. Developers add numbers to a collection within the StoryManager

script, but this can’t handle multiple scenarios in its current state. A fix for this could be a Scenario Data prefab

that holds information about the scenario and is accessed by the StoryManager script.

Simplifying addition of content

Whenever a new type of content is added to this project, the act of adding and implementing that content

should be made as simple as possible. One of the items listed for future development is adding 3D models for

places of interest, which can include characters and buildings. The process for adding this content should be as

simple as making prefabs and assigning them to a collection a script can run through to select the appropriate

model to spawn as a waypoint on the map.

Current process can be simplified as well. When adding scenario selection buttons to the ScenarioSelect

menu, the process could be simplified by replacing the act of copying and repurposing existing buttons with a

prefab and inspector button system. The menu manager for the scene could be used to add buttons to the menu

with the inspector, cutting down the amount of steps required.

Distributing workload

Another aspect to consider when developing Rochester Steampunk AR as a tool for student groups to

use is the timeline and mix of backgrounds most groups at RIT have. Processes like handling the addition of

narrative content should be able to be completed by students that want to focus on creative interactive

28
narratives, requiring as little interaction with Unity as possible. This allows more of their time to be spent

creating quality content for the application than trying to figure out Unity UI elements and scripting practices.

Students with programming backgrounds should be able to manage the Unity project, testing added content

while adding and improving features in the app and tools in the Unity project.

29
XI - Build Chart and Future Features

 Original Project
(Aris/Esri)

Unity Project/Build
Version 1 - Spring
2020

Unity Project/Build
Version 2 -
Fall 2020

Unity Project/Build
Version 3 -
Spring 2021

Additional Features

App
Features

- Narrative story

segments

Narrative images

- Dialogue events/ NPC

interactions

- Decision paths within

dialogue events

- Maps + POI

- Location tracking

- Location-based

interactions with

narrative segments

- Web player (accessible

from most devices)

- Random encounters

Working Esri Demo

- Narrative story

segments

- Narrative images

- Maps + POI

- Location tracking

- Location-based

interactions with

narrative segments

- Familiar

location-based game

template

- Custom map style

Android build

- Dialogue events/ NPC

interactions

- Decision paths within

dialogue events

- 3D building extrusion

from map

- Improved Dialogue

UI

- Saved progress/game

data

- Error handling,

messages

- 3D buildings &

character models

for POIs

- Interactive

content modules

(videos, audio,

games/puzzles)

- Game audio

- Tour Mode

(waypoints without

narrative content at

key locations in

city)

- Connection to

online accounts

(GooglePlay, social

media, etc.)

- AR camera

implementation

(NPC/Building

modes in

worldspace)

Developm
ent Tool
Features

- Narrative catalog

structure

- Timeline/Process

Manuals for Aris/Esri

development

Google drive folder

- Unity project

- File-based game data

(narrative +

coordinates)

- Mapbox

implementation

- Reusable Prefabs

Unity project manual

Google drive folder

- UI Themes (dynamic

background images

and fonts for UI

elements)

- Replace hardcoded

areas I

- Dialogue system

- Different

SpawnOnMap

waypoint prefabs

(narrative vs dialogue

vs random encounter)

- Updated Unity project

manual

- Unity Inspector

menus

- Improve file

handling

- Replace

hardcoded areas II

- Mapbox Styles

manual/walkthroug

h

- Updated Unity

project manual

https://www.arcgis.com/apps/MapJournal/index.html?appid=d5dbbc7238db4f379f9e36db1c5b3f62#
https://drive.google.com/open?id=1n3JG2feo3T4_uGpGixw2YJ5GxRYTIQHu
https://drive.google.com/open?id=1HrIPTGshM5xurMR3eOBw8YmC2wU8btTR
https://drive.google.com/open?id=1HrIPTGshM5xurMR3eOBw8YmC2wU8btTR
https://drive.google.com/open?id=1Y9QCm2U4VR0Kelr-Qttn8LMRKJq74e78
https://drive.google.com/open?id=1MxbBY87cvWzlok4jPDpvv7r1V7j1GAga
https://drive.google.com/open?id=1e2fZ-1aa5ED0-UB4cO2WDqLA0HSpWdtC

